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Abstract. One of the foremost techniques in the design and analysis

of approximation algorithms is to round the optimal solution to a linear

programming relaxation in order to compute a near-optimal solution to

the problem at hand. We shall survey recent work in this vein for two

particular problems: the uncapacitated facility location problem and the

problem of scheduling precedence-constrained jobs on one machine so as

to minimize a weighted average of their completion times.

1 Introduction

One of the most successful techniques in the design and analysis of approxima-
tion algorithms for combinatorial optimization problems has been to first solve
a relaxation of the problem, and then to round the optimal solution to the relax-
ation to obtain a near-optimal solution for the original problem. Although the
relaxation used varies from problem to problem, linear programming relaxations
have provided the basis for approximation algorithms for a wide variety of prob-
lems. Throughout this paper, we shall discuss approximation algorithms, where
a ρ-approximation algorithm for an optimization problem is a polynomial-time
algorithm that is guaranteed to find a feasible solution for the problem with
objective function value within a factor of ρ of optimal.

In this brief survey, we shall discuss recent developments in the design of
approximation algorithms for two specific problems, the uncapacitated facility
location problem, and a rather basic single-machine scheduling problem. In fo-
cusing on just two problems, clearly we are omitting a great deal of important
recent work on a wide cross-section of other problems, but the reader can ob-
tain an accurate indication of the level of activity in this area by considering,
for example, the other papers in this proceedings. For a more comprehensive
review of the use of this approach, the reader is referred to the volume edited
by Hochbaum [16].

We shall consider the following scheduling problem. There are n jobs to be
scheduled on a single machine, where each job j has a specified weight wj and
processing time pj, j = 1, . . . , n, which we restrict to be positive integers. Fur-
thermore, there is a partial order ≺ that specifies a precedence relation among
the jobs; if j ≺ k then we must find a schedule in which job j completes its pro-
cessing before job k is started. Each job must be processed without interruption,
and the machine can process at most one job at a time. If we let Cj denote the
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completion time of job j, then we wish to minimize the average weighted comple-
tion time

∑n

j=1 wjCj/n, or equivalently,
∑n

j=1 wjCj . In the notation of Graham,
Lawler, Lenstra, & Rinnooy Kan [11], the problem is denoted 1|prec|

∑
wjCj ;

it was shown to be NP-hard by Lawler [21].
The first non-trivial approximation algorithm for 1|prec|

∑
wjCj is due to

Ravi, Agrawal, & Klein [33], who gave an O(lg n lg W )-approximation algorithm,
where W =

∑
j wj . A slightly improved performance guarantee of O(lg n lg lg W )

follows from work of Even, Naor, Rao, & Schieber [9]. We shall present a series
of results that give constant approximation algorithms for this problem, where
the resulting algorithms are both simple to state, and simple to analyze.

We shall also consider the uncapacitated facility location problem. In this
problem, there is a set of locations F at which we may build a facility (such as a
warehouse), where the cost of building at location i is fi, for each i ∈ F . There
is a set D of client locations (such as stores) that require to be serviced by a
facility, and if a client at location j is assigned to a facility at location i, a cost
of cij is incurred. All of the data are assumed to be non-negative. The objective
is to determine a set of locations at which to open facilities so as to minimize
the total facility and assignment costs.

Building on results for the set covering problem (due to Johnson [19], Lovász
[25], and Chvátal [7]), Hochbaum [15] showed that a simple greedy heuristic is an
O(log n)-approximation algorithm, where n denotes the total number of locations
in the input. Lin & Vitter [24] gave an elegant filtering and rounding technique
that yields an alternate O(log n)-approximation algorithm for this problem. We
shall focus on the metric case of this problem, in which distances between loca-
tions are given in some metric (and hence satisfy the triangle inequality), and
the assignment costs cij are proportional to the distance between i and j, for
each i ∈ F , j ∈ D. We shall present a series of results that give constant approx-
imation algorithms for this problem, where, once again, the resulting algorithms
are both simple to state, and (relatively) simple to analyze.

2 A simple scheduling problem

We shall present approximation algorithms for the problem of scheduling prec-
edence-constrained jobs on a single machine so as to minimize the average
weighted completion time, 1|prec|

∑
wjCj . Although we will primarily focus on

this one scheduling model, the starting point for the work that we shall survey
is an extremely simple, elegant result of Phillips, Stein, & Wein [29] for a related
problem, in which the jobs are now independent (that is, there are no prece-
dence constraints) but instead each job j has a specified release date rj before
which it may not begin processing, j = 1, . . . , n; furthermore, they consider the
unit-weight case, or in other words, wj = 1, for each j = 1, . . . , n. This problem
is denoted 1|rj |

∑
Cj and was shown to be NP-hard by Lenstra, Rinnooy Kan,

& Brucker [22].
The algorithm of Phillips, Stein, & Wein [29] is based on a relaxation of

the problem that can be solved in polynomial time. In this case, however, the
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relaxation is not a linear program, but instead one motivated in purely scheduling
terms: rather than requiring that each job be processed without interruption,
we allow preemption. That is, the processing of a job may be interrupted to
process another (higher priority) job instead, and then the first job may be
resumed without penalty. This problem, denoted 1|rj , pmtn|

∑
Cj , can be solved

(to optimality) by the following simple rule: schedule the jobs in time, and always
process the job with the least remaining processing time (among those already
released).

The approximation algorithm of Phillips, Stein, & Wein works as follows:
solve the preemptive relaxation, and then schedule the jobs in the order in
which they complete in the relaxed solution. It is remarkably straightforward
to show that this is a 2-approximation algorithm. Suppose that the jobs happen
to be indexed in the order in which they complete in the preemptive relax-
ation, and so are processed in the order 1, 2, . . . , n in the heuristically computed
non-preemptive schedule as well. If we consider the schedule produced by the
approximation algorithm, then any idle time in the schedule ends at the release
date of some job k (since that idle time is, in effect, caused by waiting for job
k to be released). Consequently, for each job j, there is no idle time between
maxk=1,...,j rk and the completion time of job j, Cj . This implies that

Cj ≤ max
k=1,...,j

rk +

j∑
k=1

pj .

Let Cj denote the completion time of job j in the optimal preemptive sched-
ule; since each job k, k = 1, . . . , j, has completed its processing in the optimal
preemptive schedule by Cj , it follows that

rk ≤ Ck ≤ Cj , for each k = 1, . . . , j,

By the same reasoning,
∑j

k=1 pk ≤ Cj . Hence, Cj ≤ 2Cj . Furthermore, the value
of the schedule found,

∑n

j=1 Cj , is at most twice the preemptive optimum, and
so is at most twice the value of the non-preemptive optimal schedule as well.

For 1|prec|
∑

wjCj , we shall rely on a number of linear programming relax-
ations, but the overall approach will be identical. We will solve the relaxation,
and then use the relaxed solution to compute a (natural) ordering of the jobs
that is feasible with respect to ≺; this is the schedule computed by the ap-
proximation algorithm. This is not the first scheduling problem for which this
approach has been considered; for example, Munier & König [28] have given a
very elegant approximation algorithm where the schedule (for a particular par-
allel machine scheduling problem with communication delays) is derived from
an optimal solution to a linear programming relaxation.

We start by considering a very strong linear programming relaxation, the
non-preemptive time-indexed formulation. In this formulation, which is due to
Dyer & Wolsey [8], we use the variable xjt to indicate whether job j completes
processing at time t, j = 1, . . . , n, t = 1, . . . , T , where T =

∑n

j=1 pj . Given these
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decision variables, it is easy to represent the objective function:

Minimize

n∑
j=1

wj

T∑
t=1

t · xjt. (1)

We can constrain the assignments of the decision variables as follows. Each job
must complete at a unique point in time; hence,

T∑
t=1

xjt = 1, j = 1, . . . , n. (2)

No job j can complete before pj:

xjt = 0, if t < pj . (3)

The sum
∑t

s=1 xjs = 1 if and only if job j has been completed by time t; if
j ≺ k, we know that job j must complete at least pk time units earlier than job
k, and hence

t∑
s=1

xjs ≥

t+pk∑
s=1

xks, if j ≺ k, t = 1, . . . , T − pk. (4)

Of course, the machine can process at most one job at each time t; job j is
processed at time t if it completes at any time within the interval [t, t + pj − 1]:

n∑
j=1

t+pj−1∑
s=t

xjs ≤ 1, t = 1, . . . , T. (5)

If we wish to give an integer programming formulation of the problem, then
we would require each variable to be either 0 or 1. We shall consider the linear
programming relaxation, in which we require that xjt ≥ 0, j = 1, . . . , n, t =

1, . . . , T. For any feasible fractional solution x, we define Cj =
∑T

t=1 t ·xjt to be
the fractional completion time of job j, j = 1, . . . , n. If x is an optimal solution
to the linear relaxation, then

∑n

j=1 wjCj is a lower bound on the optimal value
for the original problem.

For a given α, 0 ≤ α ≤ 1, and a job j, j = 1, . . . , n, we focus on the earliest
point in time that a cumulative α-fraction of job j has been slated to complete:
let the α-point of job j be tj(α) = min{t :

∑t

s=1 xjs ≥ α}. The notion of
an α-point was also introduced in the work of Phillips, Stein, & Wein [29], in
a slightly different context. Hall, Shmoys, & Wein [14] proposed the following
algorithm for 1|prec|

∑
wjCj : schedule the jobs in non-decreasing order of their

α-points. It is easy to see that the constraints (4) ensure that the schedule found
satisfies the precedence constraints.
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The α-point algorithm of Hall, Shmoys, & Wein can be analyzed as follows.
Suppose that the jobs happen to be indexed in non-decreasing α-point order.
Hence, each job j completes at time

Cj =

j∑
k=1

pk. (6)

For each job k, k = 1, . . . , j, an α fraction of each job k is done by time tj(α),
and hence

α

j∑
k=1

pk ≤ tj(α). (7)

Consider the fractional completion time Cj ; one can view the values xjt as
providing a weighted average of the corresponding values t. Since less than a
1 − α fraction of the weight can be placed on values more than 1/(1 − α) times
the average, we see that

tj(α) ≤ Cj/(1 − α). (8)

By combining (6)–(8), we see that each job j completes at time

Cj ≤ Cj/(α(1 − α)).

Consequently, we see that the value of the solution found,
∑n

j=1 wjCj , is within

a factor of 1/(α − α2) of
∑n

j=1 wjCj , which is a lower bound on the optimal

value. If we set α = 1/2 (to minimize 1/(α−α2)), we see that we have obtained
a solution of value within a factor of 4 of the optimum.

But is setting α = 1/2 the best thing to do? Goemans [10] observed that
rather than choosing α once, to optimize the performance guarantee, it makes
more sense to consider, for each input, which choice of α would deliver the best
schedule for that particular input. (Chekuri, Motwani, Natarajan, & Stein [3]
independently suggested an analogous improvement to the algorithm of Phillips,
Stein, & Wein.) The performance of this best-α algorithm can be analyzed by
considering the following randomized algorithm instead: set α = a by choosing
at random within the interval (0,1) according to the probability density function
f(a) = 2a. The same analysis given above implies that we can bound

E[Cj ] ≤

∫ 1

0

(tj(a)/a)f(a)da = 2

∫ 1

0

tj(a)da.

If we interpret this integral as the area under the curve defined by the function
tj(a) as a ranges from 0 to 1, then it is easy to see that this integral is precisely
Cj . Thus, the randomized algorithm produces a solution that has expected value
at most twice the optimal value. Furthermore, the algorithm that finds the value
of α for which the α-point algorithm delivers the best solution, the best-α algo-

rithm, is a deterministic algorithm guaranteed to find a solution with objective
function value at most twice the optimal value.

Of course, none of these algorithms are efficient; that is, it is not known how to
implement them to run in polynomial time, due to the size of the linear programs
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that must be solved. Since the size of the linear program can be bounded by a
polynomial in n and T =

∑
j pj , the α-point algorithm can be shown to run in

pseudo-polynomial time. It is often the case that a pseudo-polynomial algorithm
for a problem can be adapted to run in polynomial time while losing an additional
1 + ǫ factor in accuracy, basically by using only a polynomial number of bits of
accuracy in the input. However, in this case it is not clear how to use to these
well-known techniques.

Instead, Hall, Shmoys, & Wein [14] proposed using a different, more compact,
linear programming relaxation, called an interval-indexed formulation. (This
type of formulation was subsequently used in another context in the journal
version of these results [13].) The key idea behind these constructions is that
the time horizon is subdivided into the intervals [1, 1], (1, 1 + ǫ], (1 + ǫ, (1 + ǫ)2],
((1 + ǫ)2, (1 + ǫ)3], . . . , where ǫ is an arbitrarily small positive constant; the lin-
ear program only specifies the interval in which a job is completed. Since all
completion times within an interval are within a (1+ ǫ) factor of each other, the
relative scheduling within an interval will be of little consequence.

Given this basic idea, it is extremely straightforward to complete all of the
details of this polynomial-sized formulation. The linear programming relaxation
relies on the variables xjℓ, which indicate whether job j completes within the
ℓth interval. There are assignment constraints completely analogous to (2). The
precedence constraints are enforced only to the extent that if j ≺ k, then the
interval in which j finishes is no later than the interval in which k finishes.
To capture the load constraint, we merely require that the total length of jobs
assigned to complete in the interval ((1 + ǫ)ℓ−1, (1 + ǫ)ℓ] is at most (1 + ǫ)ℓ.
The analogue of the α-point algorithm is as follows: for each job, compute its α-
interval, and schedule the jobs in order of non-decreasing α-intervals, where the
jobs assigned to the same interval are scheduled in any order that is consistent
with the precedence relation. Thus, Hall, Shmoys, & Wein obtained, for any
fixed ǫ > 0, a 4 + ǫ-approximation algorithm, and the best-α-point algorithm of
Goemans can be adapted to yield a 2 + ǫ-approximation algorithm.

As it turns out, it is even easier to obtain a 2-approximation algorithm for
this problem by using other compact linear programming relaxations. Schulz
[35] (and subsequently in its journal version [13]) showed how to improve the
earlier work of Hall, Shmoys, & Wein by using a relaxation due to Wolsey [41]
and Queyranne [31]. In this formulation, there is a variable Cj for each job j in
N = {1, . . . , n}:

Minimize

n∑
j=1

wjCj (9)

subject to

∑
j∈S

pjCj ≥
∑

(j,k)∈S×S

pjpk, for each S ⊆ N, (10)

Ck ≥ Cj + pk, if j ≺ k. (11)
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If the jobs are independent, and hence there are neither precedence constraints
nor constraints in (11), then Wolsey [41] and Queyranne [31] independently
showed that this linear program provides an exact characterization of the prob-
lem 1||

∑
wjCj : extreme points of this linear program correspond to schedules.

Of course, in the case in which there are precedence constraints, the situation is
quite different, since otherwise P would be equal to NP .

The most natural approximation algorithm for 1|prec|
∑

wjCj based on this
linear relaxation is as follows: solve the relaxation to obtain a solution Cj , j =
1, . . . , n, and schedule the jobs so that their LP values are in non-decreasing
order. The analysis of this algorithm is also remarkably simple. Suppose that
the jobs happen to be indexed so that C1 ≤ · · · ≤ Cn, and so they are scheduled
by the algorithm in their index order as well. Once again, job j completes at
time Cj =

∑j

k=1 pk. If we consider the constraint (10) when S = {1, . . . , j}, then
we see that

j∑
k=1

pkCk ≥
∑

(k,k′)∈S×S

pkpk′ ≥ (1/2)(

j∑
k=1

pk)2.

However, Cj(
∑j

k=1 pk) ≥
∑j

k=1 pkCk. Hence Cj ≥ (
∑j

k=1 pk)/2, or equivalently,
Cj ≤ 2Cj . This proves that the value of the solution found is within a factor of 2
of optimal. However, it is not at all clear that this linear programming relaxation
is sufficiently more compact than the time-indexed one, since it contains an
exponential number of constraints. However, one can solve this linear program
in polynomial time with the ellipsoid algorithm, since it is easy to devise a
polynomial-time algorithm that determines whether a given fractional solution
is feasible, or if not, returns a violated constraint (see Queyranne [31]). Hence,
we have a 2-approximation algorithm.

Potts [30] has proposed yet another linear programming relaxation of the
problem 1|prec|

∑
wjCj , which is called the linear ordering formulation. In this

formulation, there are variables δij that indicate whether or not job i is processed
before job j:

Minimize

n∑
j=1

wjCj

subject to

pj +
∑n

i=1 piδij = Cj , j = 1, . . . , n;

δij + δji = 1, i, j = 1, . . . , n, i < j;

δij + δjk + δki ≤ 2, i, j, k = 1, . . . , n, i < j < k or i > j > k;

δij = 1, i, j = 1, . . . , n, i ≺ j;

δij ≥ 0, i, j = 1, . . . , n, i 6= j.

Schulz [35] has observed that for any feasible solution to this linear program,
the Cj values are feasible for the linear program (9)–(11). Hence, if we solve the
linear ordering formulation to obtain values Cj , and then schedule the jobs so
that these values are in non-decreasing order, then we obtain a more efficient
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2-approximation algorithm (since any polynomial-time linear programming al-
gorithm can be used to solve this LP with n2 variables and O(n3) constraints).

Chudak & Hochbaum [5] proposed a somewhat weaker linear programming
relaxation, which also uses the variables δij . In this relaxation, the constraints
that enforce the transitivity of the ordering relaxation, δij + δjk + δki ≤ 2, are
instead replaced with the constraints that δki ≤ δkj , whenever i ≺ j, and k
is different from both jobs i and j. Once again, a straightforward calculation
shows that for any feasible solution to this weaker linear program, the Cj values
are feasible for the constraints (10) and (11). Consequently, one also obtains
a 2-approximation algorithm by first solving this weaker linear program, and
then using the resulting Cj values to order the jobs. The advantage of using
this formulation is as follows: Chudak & Hochbaum also observed that a result
of Hochbaum, Meggido, Naor, & Tamir [17] can be applied to show that there
always exists an optimal solution to this linear program that is half-integral,
i.e., each variable δij is either 0,1/2, or 1; furthermore, an optimal half-integral
solution can be computed by a maximum flow computation. Thus, this approach
yields a 2-approximation algorithm that does not require the solution of a linear
program, but rather only a single maximum flow computation.

Chekuri & Motwani [2] and Margot, Queyranne, & Wang [27] independently
devised another, more combinatorial 2-approximation algorithm for the problem
1|prec|

∑
wjCj . We shall say that a subset S of jobs is an initial set of the

precedence relation ≺ if, for each job k ∈ S, each of its predecessors is also in S,
or more formally,

(k ∈ S and j ≺ k) ⇒ j ∈ S.

For each subset of jobs S ⊆ N , let ρ(S) =
∑

j∈S pj/
∑

j∈S wj .
Suppose that we minimize ρ(S) over all initial subsets to obtain a subset

S∗. Chekuri & Motwani and Margot, Queyranne, & Wang proved a remarkable
fact: if S∗ = N , then any ordering of the jobs that is consistent with ≺ has
objective function value within a factor of 2 of the optimum. The proof of this
fact is amazingly simple. In each feasible schedule, each job j completes by time∑

k∈N pk, and so the cost of any solution is at most (
∑

k∈N pk)(
∑

k∈N wk). So
we need only show that the optimal value is at least (

∑
k∈N pk)(

∑
k∈N wk)/2.

Suppose that the jobs happen to be indexed so that job j is the jth job to be
scheduled in an optimal schedule. Then each set {1, . . . , j} is an initial set, and
hence the completion time of job j,

Cj =

j∑
k=1

pk ≥ ρ(N)

j∑
k=1

wk.

Consequently, we know that

n∑
j=1

wjCj ≥ ρ(N)
n∑

j=1

j∑
k=1

wjwk ≥ ρ(N)(
n∑

j=1

wj)
2/2.

Recalling that ρ(N) =
∑n

j=1 pj/
∑n

j=1 wj , we see that we have obtained the
desired lower bound on the optimal value.
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Of course, there is no reason to believe that N is the initial set S for which
ρ(S) is minimized. Fortunately, if this is not the case, then we can rely on the
following decomposition result of Sidney [37]: if S∗ is the initial set S for which
ρ(S) is minimized, then there exists an optimal solution in which the jobs of S∗

precede the jobs of N−S∗. This suggests the following recursive 2-approximation
algorithm: find the set S∗, and schedule it first in any order consistent with the
precedence relation ≺, and then recursively apply the algorithm to N −S∗, and
concatenate the two schedules found. It is not hard to show that the initial set S∗

can be found via a minimum cut (or equivalently, a maximum flow) computation.
For each of the results above, we have presented an algorithm and then

showed that it delivers a solution whose objective function value is within some
constant factor of the optimal value of a linear programming relaxation of the
problem. Such a result not only shows that we have found a good algorithm, but
also implies a guarantee for the quality of the lower bound provided by that linear
program. For each of the linear programs concerned, one might ask whether
these particular algorithms can be improved; that is, might it be possible to
round the optimal fractional solutions in a more effective manner? Unfortunately,
the answer to each of these questions is no. For the time-indexed formulation,
Schulz & Skutella [34] have given instances for which the ratio between the
integer and fractional optima is arbitrarily close to 2. For the linear ordering
formulation, Chekuri & Motwani [2] have given a surprising construction based
on expander graphs for which the ratio of the integer to fractional optimal values
asymptotically approaches 2. Each of these results implies the analogous result
for the linear program (9)–(11), but for this relaxation it is also relatively simple
to construct examples directly. Of course, there might still be other relaxations
that provide stronger lower bounds, and this is an extremely interesting direction
for further research.

3 The uncapacitated facility location problem

The uncapacitated facility location problem is one of the most well-studied prob-
lems in the Operations Research literature, dating back to the work of Balinski
[1], Kuehn & Hamburger [20], Manne [26], and Stollsteimer [38, 39] in the early
60’s. We shall focus on one important special case of this problem, where the
locations are embedded in some metric space, and the assignment costs cij are
proportional to the distances between locations; we shall call this the metric

uncapacitated facility location problem.
Although there is little work that has specifically focused on the metric case

of this location problem, for many others, such as the k-center problem (see, e.g.,
[18]) and the k-median problem (see, e.g., [23]) this assumption is prevalent. In
fact, the algorithms of Lin & Vitter [23] contained many of the seeds of the work
that we shall present for the metric uncapacitated facility location problem.

Once again, all of the algorithms that we shall discuss will be based on
rounding an optimal solution to a linear programming relaxation of the problem.
For this problem, the most natural relaxation is as follows. There are two types
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of decision variables xij and yi, for each i ∈ F , j ∈ D, where each variable yi,
i ∈ F , indicates whether or not a facility is built at location i, and each variable
xij indicates whether or not the client at location j is assigned to a facility at
location i, for each i ∈ F , j ∈ D:

Minimize
∑
i∈F

fiyi +
∑
i∈F

∑
j∈D

cijxij (12)

subject to
∑
i∈F

xij = 1, for each j ∈ D, (13)

xij ≤ yi, for each i ∈ F, j ∈ D, (14)

xij ≥ 0, for each i ∈ F, j ∈ D. (15)

Shmoys, Tardos, & Aardal [36] gave a simple algorithm to round an optimal
solution to this linear program to an integer solution of cost at most 3/(1−e3) ≈
3.16 times as much. The algorithm relies on the filtering technique of Lin & Vitter
[24]. We can interpret each fractional solution (x, y) as the following bipartite
graph G(x, y) = (F, D, E): the two sets of nodes are F and D, and there is an
edge (i, j) ∈ E exactly when xij > 0.

First, we apply an α-filtering algorithm to convert the optimal fractional
solution to a new one, (x̄, ȳ), in which the cost cij associated with each edge
in G(x̄, ȳ) is relatively cheap. As in the algorithm based on the time-indexed
formulation for the scheduling problem, we first define the notion of an α-point,
cj(α), for each location j ∈ D. Focus on a location j ∈ D, and let π be a
permutation such that cπ(1)j ≤ cπ(2)j ≤ · · · ≤ cπ(n)j. We then set cj(α) = cπ(i∗)j ,

where i∗ = min{i′ :
∑i′

i=1 xπ(i)j ≥ α}. To construct (x̄, ȳ), for each (i, j) ∈
E(x, y) for which cij > cj(α) we set x̄ij = 0, and then renormalize by setting
each remaining x̄ij equal to xij/αj , where αj =

∑
(i,j)∈E: cij≤cj(α) xij . We also

renormalize ȳi = yi/α. It is easy to check that (x̄, ȳ) is a feasible solution to the
linear program (12)–(15) with the further property that x̄ij > 0 ⇒ cij ≤ cj(α).
Motivated by this, given values gj , j ∈ D, we shall call a solution g-close if
x̄ij > 0 ⇒ cij ≤ gj .

The central element of the rounding algorithm of Shmoys, Tardos, & Aardal
is a polynomial-time algorithm that, given a g-close feasible solution (x̄, ȳ) to
(12)–(15), finds a 3g-close integer solution (x̂, ŷ) such that

∑
i∈F

fiŷi ≤
∑
i∈F

fiȳi.

The algorithm works as follows. It partitions the graph G(x̄, ȳ) = (F, D, E) into
clusters, and then, for each cluster, opens one facility that must serve all clients
in it. The clusters are constructed iteratively as follows. Among all clients that
have not already been assigned to a cluster, let j′ be the client j for which gj is
smallest. This cluster consists of j′, all neighbors of j′ in G(x̄, ȳ), and all of their
neighbors as well (that is, all nodes j such that there exists some i for which
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(i, j) and (i, j′) are both in E. Within this cluster, we open the cheapest facility
i′ and use it to serve all clients within this cluster.

We next show that this rounding algorithm has the two claimed properties.
Each client j in the cluster is assigned to a facility i′ for which there is a path in
G(x̄, ȳ) consisting of an edge connecting i′ and j′ (of cost at most gj′), an edge
connecting j′ and some node i (of cost at most gj′), and an edge connecting i and
j (of cost at most gj). Hence, by the triangle inequality, the cost of assigning j to
i′ is at most 2gj′ + gj. Since j was chosen as the remaining client with minimum
g-value, it follows that gj′ ≤ gj, and so the cost of assigning j to i′ is at most
3gj. In other words, the integer solution found is 3g-close.

Consider the first cluster formed, and let j′ be the node with minimum g-
value used in forming it. We know that

∑
i:(i,j′)∈E x̄ij′ = 1. Since the minimum

of a set of values is never more than a weighted average of them, the cost of the
facility selected

fi′ ≤
∑

i:(i,j′)∈E

x̄ij′fi ≤
∑

i:(i,j′)∈E

ȳifi,

where the last inequality follows from constraint (14). Observe that, throughout
the execution of the algorithm, each location j ∈ D that has not yet been
assigned to some cluster, has the property that each of its neighbors i must also
remain unassigned. Hence, for each cluster, the cost of its open facility is at most
the cost that the fractional solution assigned to nodes in F within that cluster.
Hence, in total, ∑

i∈F

fiŷi ≤
∑
i∈F

fiȳi.

Thus, we have argued that the rounding algorithm of Shmoys, Tardos, & Aardal
has the two key properties claimed above.

Suppose that we apply this rounding theorem to an α-filtered solution. What
can we prove about the cost of the resulting integer solution? By the two prop-
erties proved above, we know that the cost of the solution is at most∑

i∈F

fiŷi +
∑
i∈F

∑
j∈D

cij x̂ij ≤
∑
i∈F

fiȳi +
∑
j∈D

3cj(α) =
∑
i∈F

fiyi/α + 3
∑
j∈D

cj(α).

However, exactly analogous to (8), we again know that at most a (1−α) fraction
of the values in a weighted average can exceed 1/(1−α) times the average, and
hence

cj(α) ≤ (
∑
i∈D

cijxij)/(1 − α).

Plugging this bound into the previous inequality, we see that the total cost of
the solution found is at most

max{
1

α
,

3

1 − α
}(

∑
i∈F

fiyi +
∑
i∈F

∑
j∈D

cijxij).

If we set α = 1/4, then we see that the total cost of the solution found is at most
4 times the cost of (x, y), and so by rounding an optimal solution to the linear
relaxation, we obtain a 4-approximation algorithm.
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Once again, we may apply the idea of Goemans [10]; it is foolish to set α once,
rather than choosing the best α for each input. Once again, we will analyze this
best-α algorithm by analyzing a randomized algorithm instead. Let 0 < β < 1 be
a parameter to be fixed later. We shall set α = a, where a is selected uniformly
at random within the interval [β, 1]. Once again, we shall rely on the fact that

∫ 1

0

cj(a)da =
n∑

i=1

cijxij .

The expected cost of the solution found can be upper bounded by

E[
1

a

∑
i∈F

fiyi + 3
∑
j∈D

cj(a)] = E[
1

a
]
∑
i∈F

fiyi + 3
∑
j∈D

E[cj(a)]

= (

∫ 1

β

1

1 − β

1

a
da)

∑
i∈F

fiyi + 3
∑
j∈D

(

∫ 1

β

1

1 − β
cj(a)da)

≤
ln(1/β)

1 − β

∑
i∈F

fiyi +
3

1 − β

∑
j∈D

∫ 1

0

cj(a)da

=
ln(1/β)

1 − β

∑
i∈F

fiyi +
3

1 − β

∑
j∈D

∑
i∈F

cijxij .

If we set β = 1/e3, then we have obtained the claimed 3
1−e3 -approximation

algorithm.
Guha & Khuller [12] proposed the following improvement to the algorithm

of Shmoys, Tardos, & Aardal. A natural way in which to compute a better so-
lution is to perform a post-processing phase in which one iteratively checks if
an additional facility can be opened to reduce the overall cost, and if so, greed-
ily opens the facility that most reduces the total cost. Furthermore, Guha &
Khuller also proposed the following strengthening of the linear programming
relaxation. If one knew the cost φ incurred to build facilities in the optimal so-
lution, one could add the constraint that

∑
i∈F fiyi ≤ φ. Since we don’t know

this value, we can instead guess this value by setting φ equal to (1 + ǫ)k, for
each k = 1, . . . , log1+ǫ

∑
i∈F fi, where ǫ is an arbitrarily small positive constant.

There are only a polynomial number of settings for φ that must be considered,
and so, in effect, we may assume that we know the correct φ to an arbitrary
number of digits of accuracy. By adding the post-processing phase to the re-
sult of applying the rounding algorithm to the strengthened relaxation, Guha
& Khuller obtain a 2.408-approximation algorithm. Guha & Khuller [12] and
Sviridenko [40] independently showed that this problem is MAXSNP-hard, and
hence there exists some constant ρ > 1 for which no ρ-approximation algorithm
exists, unless P = NP . Guha & Khuller also showed a much stronger result,
that no approximation algorithm can have performance guarantee better than
1.463 (unless NP ⊆ DTIME(nO(log log n))).

Chudak & Shmoys, independently, obtained a more modest improvement, a
3-approximation algorithm, which relies only on the original linear programming
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relaxation. The first essential idea in their improvement was the observation that
the filtering step is, in some sense, completely unnecessary for the performance
of the algorithm. This was based on a simple property of the optimal solution
to the linear programming relaxation. Consider the dual to the linear program
(12)–(15):

Maximize
∑
j∈D

vj (16)

subject to

∑
j∈D

wij ≤ fi, for each i ∈ F,

vj − wij ≤ cij , for each i ∈ F, j ∈ D,

wij ≥ 0 for each i ∈ F, j ∈ D.

This dual can be motivated in the following way. Suppose that we wish to obtain
a lower bound for our input to the uncapacitated facility location problem. If we
reset all fixed costs fi to 0, and solve this input, then clearly we get a (horrible)
lower bound: each client j ∈ D gets assigned to its closest facility at a cost
of mini∈F cij . Now suppose we do something a bit less extreme. Each location
i ∈ F decides on a given cost-sharing of its fixed cost fi. Each location j ∈ D
is allocated a share wij of the fixed cost; if j is assigned to an open facility at
i, then it must pay an additional fee of wij (for a total of cij + wij), but the
explicit fixed cost of i is once again reduced to 0. Of course, we insist that each
wij ≥ 0, and

∑
j∈D wij ≤ fi for each i ∈ F . But this is still an easy input to

solve: each j ∈ D incurs a cost vj = mini∈F (cij + wij), and the lower bound is∑
j∈D vj . Of course, we want to allocate the shares so as to maximize this lower

bound, and this maximization problem is precisely the LP dual.
Consider a pair of primal and dual optimal solutions: (x, y) and (v, w). Com-

plementary slackness implies that if xij > 0, then the corresponding dual con-
straint is satisfied with equality. That is, vj − wij = cij , and since wij ≥ 0, we
see that cij ≤ vj ; in other words, (x, y) is already v-close. Hence, if we apply the
rounding algorithm of Shmoys, Tardos, & Aardal (without filtering first, and so
gj = vj), we find a solution of cost at most

∑
i∈F

fiyi+
∑
j∈D

3vj =
∑
i∈F

fiyi+3(
∑
i∈F

fiyi+
∑
i∈F

∑
j∈D

cijxij) ≤ 4(
∑
i∈F

fiyi+
∑
i∈F

∑
j∈D

cijxij),

where the first equality follows from the fact that the optimal solutions to the
primal and the dual linear programs have equal objective function values.

The second key idea in the improvement of Chudak & Shmoys was the use of
randomized rounding in the facility selection step. Randomized rounding is an
elegant technique introduced by Raghavan & Thompson [32], in which a feasible
solution to a linear programming relaxation of a 0–1 integer program is rounded
to an integer solution by interpreting the fractions as probabilities, and setting
each variable to 1 with the corresponding probability. Sviridenko [40] proposed
a simple randomized rounding approximation algorithm for the special case of
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the metric uncapacitated facility location problem in which each cij ∈ {1, 2}. In
the deterministic algorithm presented above, the cheapest facility in each cluster
was opened. Instead, if the cluster is “centered” at j′, one can open facility i
with probability xij′ . This does not really change the previous analysis, since
the expected cost of the facilities selected is at most

∑
i∈F fiyi, and the bound

on the assignment costs was independent of the choice of the facility opened in
each cluster.

The final idea used to obtain the improved performance guarantee is as fol-
lows: rather than select the next center by finding the remaining client for which
vj is minimum (since gj = vj in the version without filtering), select the client
for which vj +

∑
i∈F cijxij is minimum. This enters into the analysis in the fol-

lowing way. For each client j in the cluster “centered” at j′, its assignment cost is
bounded by the cost of an edge (i, j) (of cost at most vj), an edge (i, j′) (of cost
at most vj′ ), and the edge (i′, j′). The last of these costs is a random variable,
and so we can focus on its expected value. Since j′ chooses to open each facility i
with probability xij′ , the expected cost of the edge (i′, j′) is exactly

∑
i∈F cij′xij′ .

Thus, the expected cost of assigning j to i′ is at most vj + vj′ +
∑

i∈F cij′xij′ .
By our modified selection rule, this expectation is at most 2vj +

∑
i∈F cijxij ,

and hence the expected total cost of the solution is at most∑
j∈D

2vj +
∑
j∈D

∑
i∈F

cijxij +
∑
i∈F

fiyi,

which is exactly equal to three times the optimal value of the linear programming
relaxation.

The analogous deterministic algorithm is quite natural. Before, we merely
chose the cheapest facility in each cluster. However, by choosing a facility, we
also affect the assignment cost of each client in that cluster. Thus, if choose
the facility that minimizes the total cost for that cluster, then we achieve a
deterministic 3-approximation algorithm.

However, this is not the best possible analysis of this randomized algo-
rithm. Subsequently, Chudak [4] and Chudak & Shmoys [6] have improved this
bound to show that (essentially) this randomized algorithm leads to a (1+2/e)-
approximation algorithm. We shall modify the algorithm in the following way.
For each location i ∈ F , there is some probability pi with which it has been
opened by this algorithm. (For most locations, it is equal to some value xij′

when facility location i belongs to a cluster “centered” at j′, but some locations
i might not belong to any cluster.) In the modified algorithm, we also have in-
dependent events that open each facility i with probability yi − pi. In fact, we
can simplify some of this discussion by making the following further assump-
tion about the optimal solution (x, y) to the linear program (12)–(15): for each
xij > 0, it follows that xij = yi. We shall say that such a solution is complete.
This assumption can be made without loss of generality, since it is not hard
to show that for any input, there is an equivalent input for which the optimal
fractional solution is complete.

For the algorithms above, we have indicated that each client is assigned to
the facility that has been opened in its cluster. In fact, there is no need to make



www.manaraa.com

this assumption about the assignments, since we may simply assign each client
to its cheapest open facility. Given this, the key insight to the improved analysis
is as follows. Consider some client j (which is not the center of its cluster). We
have shown that its assignment cost is at most 3vj (for the 4-approximation
algorithm, and a somewhat better bound for the 3-approximation algorithm).
However, the randomized algorithm might very well open one of j’s neighbors
in G(x, y). In that case, clearly we can obtain a much better bound on the
assignment cost incurred for client j. In fact, one can show that the probability
that a facility has been opened at least one of j’s neighbors is at least (1− 1/e),
and this is the basic insight that leads to the improved analysis.

Although the complete analysis of this algorithm is beyond the scope of
this survey, we will outline its main ideas. The improvement in the bound is
solely due to the fact that we can bound the expected assignment cost for each
client j by

∑
i∈F cijxij + (2/e)vj. In fact, we will only sketch the proof that this

expectation is at most
∑

i∈F cijxij + (3/e)vj , and will use as a starting point,
the original clustering algorithm in which the next client selected is the one for
which vj is smallest (rather than the modified one in which selection was based
on vj +

∑
i∈F cijxij).

Suppose that the neighbors of client j in G(x, y) happen to be nodes 1, . . . , d,

where c1j ≤ · · · ≤ cdj. Thus,
∑d

i=1 xij =
∑d

i=1 yi = 1. We can bound the ex-
pected assignment cost for j, by considering nodes i = 1, . . . , d in turn, assigning
j to the first of these that has been opened, and if none of these facilities have
been opened, then assigning j to the “back-up” facility i′ that has surely been
opened in its cluster. If opening neighboring facilities i = 1, . . . , d were indepen-
dent events, then a simple upper bound on the expected assignment cost for j
is

y1c1j + (1− y1)y2c2j + · · ·+ (1− y1) · · · (1− yd−1)ydcdj + (1− y1) · · · (1− yd)3vj ,

which is clearly at most
∑d

i=1 cijyi+3vj

∏d

i=1(1−yi). The Taylor series expansion
of e−r implies that 1 − r ≤ e−r. Using this fact, and the assumption that the
optimal LP solution (x, y) is complete, we see that the expected assignment cost
for j is at most

∑
i∈F cijxij + (3/e)vj .

However, opening the neighboring facilities i = 1, . . . , d are not independent
events: for instance, if two of these neighbors are in the same cluster, then only
one of them can be opened. The next question is: can the conditioning between
these events be harmful? Fortunately, the answer is no, and it is fairly intuitive to
see why this is the case. If it happens that none of the first k neighbors of j have
not been opened, this only makes it more likely that the next cheapest facility
is, in fact, open. A precise analysis of this situation can be given, and so one can
prove that the expected assignment cost for j is at most

∑
i∈F cijxij + (3/e)vj

(without relying on unsupportable assuptions).

These randomized approximation algorithms can each be derandomized, by
a straightforward application of the method of conditional probabilities. Thus,
if we return to the selection rule in which the next cluster is “centered” at the
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remaining client j for which vj +
∑

i∈F cijxij is minimized, then this derandom-
ization leads to a (1 + 2/e)-approximation algorithm.

For the uncapacitated facility location problem, the natural questions for
further research are even more tantalizing than for the scheduling problem dis-
cussed in the previous section. It is not known that the analysis of the algorithm
of Chudak & Shmoys is tight (and in fact, we suspect that it is not tight). Guha
& Khuller [12] have given an input for which the ratio between the optimal
integer and fractional optima is at least 1.463, but this still leaves some room
between that and the upper bound of 1 + 2/e ≈ 1.736 implied by the last al-
gorithm. Furthermore, there are well-known ways to construct stronger linear
programming relaxations for this problem, and it would be very interesting to
use them to prove stronger performance guarantees.
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